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Abstract 
The study of parametrized families of curves and surfaces is a classical topic of great importance in 

applied science and engineering. It suffers from a lack of rigorous theory and of theorems. The usage 

of technology such as Computer Algebra Systems (CAS) may give this mathematical domain a new role 

in STEM education.  

Two central features of technology are used here: the graphical register of the CAS, and the algebraic 

algorithms provide automated proof of the results. 

Their respective roles are different when working in 2D and in 3D. In this last case, the joint influence 

of visualization problems and the non-availability of certain tools such as a slider push the central 

aspects of the study towards automated proofs.       

 

1. Introduction   
A long time ago, some classical topics disappeared from the curriculum in Differential Geometry. 

In 1962, Thom complained about the disappearance of envelopes of parameterized families of 

curves and surfaces (see [19]). Nevertheless, the topic was still included in textbooks, such as [4], 

but nor for a long time. Later among the possible reasons for that disappearance are the facts that 

the theory is not so well-developed, that numerous theorems do not exist but numerous special cases 

exist. Moreover, the geometric nature of the topic induces the need for visualization skills which are 

not frequent.  This disappearance is problematic, as envelopes of curves and more than that of 

surfaces are ubiquitous in industrial plants. The topic is present in robotics, optics, ballistics, and 

numerous other applied fields, making it fully relevant to STEM (Science, Technology, Engineering 

and Mathematics) education.   

Trigueros-Gaismann and Martinez-Planell note in [20] that research on particularities of 

multivariable functions to explicitly study how students build their understanding of them is scarce. 

This problem is even stronger when studying general surfaces in 3-dimensional space: according to 

the theorem of implicit functions, a surface given by an implicit equation may be viewed locally as 

the graph of a two-variable function, but this may not help a freshman to grasp the surface globally. 

This theorem is useful for studying local properties, but the existence of envelopes is a global 

property of a family of surfaces. The visualization issue is harder in this framework.  

In the same paper, they note that, in order to understand functions, it is important to relate different 

registers of representation; see [9]. Switching between different registers of representation is an 

important skill in the study of envelopes of parametrized families of plane curves presented in [7]. 

In [21], Yerushalmy points out the importance of the interplay between different registers of 

representation for the transition from the study of one-variable to the study of two-variable 

functions. When beginning working on envelopes of parametrized families of surfaces, we could 
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rely on the assumption that this interplay will be even more important, as surfaces may be 

represented in more ways than plane curves and as the visualization issue is harder in this case.  

We recall that a surface in 3D space is generally given either by an implicit equation of the form 

0),,( =zyxF or by a parametric presentation of the form ( )),(),,(),,( vuzvuyvux  where u and v are 

real parameters.  

A Computer Algebra System (CAS) is a multi-purpose package for doing mathematics, but not only 

for practical computations. Following Artigue in [2], we expect from software and computational 

tools to be pedagogical instruments for the learning of mathematical knowledge. The tools should 

help to avoid practices too much orientated towards pure lecturing or the procedural work, and 

rather push towards more profound understanding and acquisition of new mathematical skills.  

Using Artigue's taxonomy, working with technology should not be aimed at achieving pragmatic 

value (procedural technical work), but also and probably first epistemic value (mathematical 

understanding). 

This allows to explore, to experiment, thus to enhance mathematical thinking by connecting 

mathematical fields which are sometimes viewed as totally separated. Cuoco and Levasseur 

emphasize in [6] that one way to do so is to address classical topics. Envelopes are one of them. 

Moreover, because of their applications, a study of envelopes may contribute to the integrated 

aspect of STEM education. 

 A CAS enables one to study envelopes in an either analytic or algebraic framework, and in both 

simultaneously. When the defining formula for the family is polynomial, then the subsequent 

equations are all polynomial. Algorithms employed to solve the non-linear systems of equations are 

based on Gröbner bases computations, described for example in [1] and [5]. Other algorithms exist 

to solve non-polynomial systems of equations. The power of such algorithms to solve geometric 

problems is emphasized in Pech’s book [16]. 

Before proceeding further, we recall that when a parametric presentation exists for a given curve (or 

a surface), it is non-unique. For example, if the curve C is given by the presentation

( ) ( ) Ittftfyx = ,)(,)(, 21 , where I is an interval in the set of real numbers, then setting 

Juugt = ),( , where J is an interval and g a bijective function from J to I, then we obtain another 

parametrization for C. 

The easiest example is given by the unit circle in the plane, which may be described by a 

trigonometric presentation such as ( ) ( )  2,0,sin,cos, = tttyx   and also by a rational 

parametrization such as ( ) R,
1
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yx . The usage of rational parametrization leads to 

polynomial equations, whence allows the usage of the algorithms based on Gröbner bases 

computations. The examples of this paper are given in such a setting.   

The output of these computations is a parametric representation of an envelope. At this step, it is 

already possible to plot some elements of the family together with the envelope which has been 

found. A further computational step consists in eliminating the parameter in order to obtain an 

implicit equation for the envelope. This implicitization is not always possible. In [18], Schultz and 

Juttler explain how to have an approximate implicitization, necessary for numerous applications of 

envelopes in engineering and industry. When implicitization is possible, there may be surprising 

results, revealed by the usage of the graphical features of the CAS. We study such an example in 

Section III. We refer also to Peternell and Pottman [17]. 

A central feature used for the study of envelopes in 2D is the existence of a slider bar, which 

provided an interactive representation of the family of curves, not only an animated representation 
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(we refer to the “animate” option generally available with the plot commands and the implicit plot 

commands of a CAS, not to the possibility of human interaction with the computer output using the 

mouse).  Examples of the output of sessions based on the usage of the slider bar are displayed and 

commented in [7]). Non-availability of a slider in 3D is a pitfall, but as mentioned previously, other 

dynamical features may be available, generally less efficient for visualization of an envelope. We 

used the CAS ability to plot surfaces in 3D space and to rotate plots dynamically using the mouse. 

In this paper, we study envelopes of 1-parameter families and 2-parameter families of planes in 3-

dimensional space. Using Duval’s taxonomy, working in an algebraic register should be similar to 

what happened with plane curves, but the work in the graphical register will encounter specific 

problems. Visualization in 3D space uses algorithms different from those in usage for 2D plots, and 

there exist various commands based on different algorithms for plotting surfaces. For example, 

Maple has a command plot3d which enables to plot graphs of functions given by an analytic 

formula of the form ),( yxfz =  and also graphs given by a parametric presentation. The command 

implicitplot3d enables to plot a surface given by an implicit equation of the form 0),,( =zyxf . 

Each of the commands includes a different choice for the mesh (triangular for implicitplot3d, based 

on geodesics, etc. for plot3d in a parametric setting), therefore for a surface given by different 

presentations, either implicit or parametric, the output may look quite different. Moreover, 

additional options have an influence on the output and the user has to develop specific skills to use 

these options. It follows that the problems a student has to deal with when representing on a screen 

a non-planar object may be non-trivial. Such issues have been addressed by in [22] and [23]. 

For the automated part of the work, we used the Maple package. 

 

2. A short reminder on envelopes of 1-parameter families of surfaces     
A set of surfaces  tS  in 3-dimensional space depending on a real parameter t is called a 1-

parameter family of surfaces. In what follows, we suppose that all the surfaces St are smooth. Kock 

distinguishes in [13] and [14] three alternative ways to define an envelope E for such a family: 

1. Synthetic: E is the union of the characteristics; the characteristic tC  is the limit curve of the 

family of curves htt SS + as .0→h  

2. Impredicative: E is a surface with the property that at each of its points, it is tangent to a 

unique surface from the given family (the locus of points where E touches tS  ). 

3. Analytic: assume that there exists a function ),,,( tzyxF such that for each t, tS is the zero set 

of 0),,,( =tzyxF . Then the surface E is the union of the F-discriminant curves, where the F-

discriminant curve F

tC for the parameter value t is the solution set for the F-discriminant 

system of equations    

(*)    









=




=

0),,,(

0),,,(

tzyx
t

F

tzyxF

. 

As Kock notes, the two first approaches are purely geometric and reveal some problems. For 

example, the notion of a limit curve in the synthetic definition is not well-defined (in which space 

do we work? with which topology?). Nevertheless, it is often used; see for example Eiden’s book 

[10] p.232 (construction of Steiner’s hypocycloid as an envelope of a specific family of lines). 

Some authors show how to derive from the synthetic definition the system of Equations (*). 
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In the impredicative definition, uniqueness is not clear, and no computational method is given. 

Finally, the analytic definition imposes the knowledge of the function F and the study should 

include checking that another function defining the same family yields the same envelope.  

 

3. A 1-parameter family of planes  

Consider the family of planes given by the equation 32 tzttyx =++ , where t is a real parameter. 

Our goal is to determine whether this family has an envelope and what is this envelope. It is 

difficult to see in Figure 1 the intersection points of the planes, and even to imagine the envelope, if 

there is one. 

 

Figure 1: Visualizing the family of planes whose equation is 
32 tzttyx =++  

For Figure 1, we chose 2,5.1,1,1,2 −−=c . Conjecturing here what the envelope of the family is 

impossible. 

 
1. The envelope of the family: synthetic method. 

Let us consider two planes in the family, namely with equations 32 tzttyx =++  and 

( ) ( ) ( )32
 +=++++ tztytx . The intersection of these planes is given by 

( )( )

( ) ( )
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where c is a real parameter. 

Computing the limit for ε arbitrary close to 0, we obtain 

(1) .R,,)23(

)2(2
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This parametrization represents a surface in the three-dimensional space. The display in Figure 2 is 

the graphical output obtained when working with a CAS. The output itself suggests that this surface 

is a ruled surface.  
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Figure 2: The envelope plotted by the CAS: a ruled surface? 

Actually, this is a special case of a general situation:  

Theorem: If a parameterized family of planes has an envelope, then this envelope is a ruled 
surface. 
Proof: 

Consider a 1-parameter family of plane given by the equation 

01)()()( =−++ ztcytbxta , 

where the coefficients are real functions of the real parameter t. The system of equations (*) is here: 





=++

=−++

0)(')(')('

01)()()(

ztcytbxta

ztcytbxta
. 

This system describes the intersection of two planes. If this intersection is non-empty, it is a line. 

Therefore, if it exists, the envelope is generated by lines. It is a ruled surface. ■ 

 It can be easily proven that if the given family of planes has a fixed line, then an envelope does not 

exist.  

  

The envelope of the family: analytic method. 
We use again the Computer Algebra System to solve the system of equations  

 (4)
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Here we have: 
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The system can be solved either by hand or using a CAS. The solution is given by:  

    (5)      
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. 

Actually this is exactly System (3), which we could expect.  
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Now we address the implicitization issue. First, we perform the work by hand. To eliminate t between 

the first two equations, we solve the equation ( )ztty 23 −=  for t, and obtain two solutions:

( )23
3

1
zyzt +−=   and ( )23

3

1
zyzt ++= . 

Then we substitute the two solutions in the equation ( ) 022 =−− tztx : 

( ) ( )

( ) ( ) 03
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We denote the solutions of these equations by 1x  and 2x . Expanding the equation

1 227( )( ) 0x x x x− − = , we obtain an implicit equation for the envelope:  

(6)   2 3 3 2 227 18 4 4 0x xyz xz y y z+ + − − = . 

 

Automated derivation of the result: 

We display now the code for a Maple session (only the most important part; file [S1] contains more 

than that, in order to show details for students): 

restart: with(plots): with(PolynomialIdeals): 

 

par := solve({F = 0, derF = 0}, {x, y, z}): 

f1 := subs(z = u, rhs(par[1])): f2 := subs(z = u, rhs(par[2])): f3 := subs(z = u, rhs(par[3])): 

plot3d([f1, f2, f3], t = -2 .. 2, u = -2 .. 2, axes = boxed); 

 

The last command yields the plot in Figure 5b. In the first row, variables are reset and the needed 

packages are uploaded. Then a parametric implicit equation for the family is entered. Next 

commands are aimed at writing and solving System (4). The solution is obtained in parametric 

form. In order not to use the variable z as a parameter for the surface (the envelope), a substitution 

is necessary (a change of variable). Finally, the plot is displayed. 

 

In what follows, an implicit equation for the envelope E is derived (also in [S1]). 

 
 

JE := EliminationIdeal(J, {x, y, z}); 

 

GJE := Generators(JE); g := GJE[1]: 

implicitplot3d(g=0,x=-3..3,y=-3..3,z=-3..3,axes=boxed,numpoints=2000); 

The last command produces the plot in Figure 3. 
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Figure 3: The envelope obtained with implicit plot 

 

Fortunately, implicitization yields here the same result as obtained by hand. Note that the plot 

obtained with the implicitplot3d command is of much lower quality than the parametric plot obtained 

previously. This issue has been discussed in [22] and [23]: implictplot3d uses a standard triangular 

mesh to plot the surface, whence the “teeth” close to the singular points, but the parametric plot 

chooses a mesh using specific features of the surface (e.g. isoclines). In Figure 5b, the parametric plot 

uses the fact that the envelope is a ruled surface.  

The envelope E of the family is determined by implicit equation (6). Denote by F the left-hand side 

of this equation, namely 22332 441827),,( zyyxzxyzxzyxF −−++= . The set of singular points of 

E is the set of points where 0=
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and the solutions are given by: ( ) R,,
3

1
,

27

1
,, 23 








−= ttttzyx . 

This is a parametric presentation of a space curve, all of its points being singular points of E. It is 

called a cuspidal curve of E; see two views in Figure 4, obtained with the spacecurve command. 

It is possible to find this cuspidal edge using automated methods, as follows: 

 

grg := Gradient(g, [x, y, z]); 

 
 

solve({grg[1]=0,grg[2]=0,grg[3]=0},{x,y,z}); 
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Figure 4: the cuspidal edge of the envelope 

If we wish to plot the envelope using implicitplot3d together with emphasizing the cuspidal edge, 

we obtain Figure 5a, giving the impression that the curve is not the good one. The problem comes, 

once again, from the fact that the curve is a locus of singularities and the above command has hard 

time in the neighbourhood of singularities. 

 

                 
(a) A problematic plot                             (b) an accurate plot. 

 

Figure 5: the envelope and the locus of singular points 

 

If we used a parametric plot, then the display is much more accurate, as in Figure 5b. 

 

4. A 2-parameter family of planes   
We consider now a family  vuS ,

 of surfaces defined by the equation 0),,,,( =vuzyxF , where u 

and v are real parameters. Here the usage of the synthetic definition is still less rigorous than in the 

1-parameter case. We work analytically.  If it exists, an envelope of the family  vuS ,
 is determined 

by the system of equations: 

(**)     
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The proof follows the same pathway as before. 

Take now the 2-parameter family of planes given by the equation 
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(7)   ( ) ( ) ( ) 03322 =+−++++ vuzvuyvux , 

where u and v are real parameters. The envelope is determined by the following system of 

equations: 

(8)    

( ) ( ) ( )
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whose solutions are given by: 

(9)              
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Equations (9) are a parametric presentation of a surface, displayed in Figure 6a. Figures 6b and 6c 

show the tangency of the surface with one of the plane in the family. 

 

  
 

(a) The envelope (b) With the plane 

(u,v)=(1,0) 

(c) With the plane 

(u,v)=(1,-1) 

Figure 6: Envelope of a 2-parameter family of planes 

 

As for the 1-parameter case, we may check existence of singular points. Now denote: 

( ) ( )( ) ( )
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A point on E is singular if the vectors 
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These vectors are linearly dependent if, and only if, u=v. By substitution of v=u into System (9), we 

obtain a parametric representation of a space curve C: 

 (10)     R,
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The curve is shown in Figure 7; the leftmost plot is the curve only, and the two others show the 

curve and the surface. Note that the envelope appears as a variety with boundary C in R3. The 

boundary is exactly the curve of singular points we found previously. 

 

 
  

Figure 7: The locus of singular points of the envelope  

 

In this example, checking where the vectors  
u

r




 and  

v

r




 are linearly dependent was easy. For 

the sake of more advanced examples, we give here the Maple code we used (file [S2]): 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

Two plots: one is opaque for a 

general display, and one is 

transparent for the display of the 

locus of singular points, drawn 

on the surface. 

Computes the 1st derivatives of 

the vector, then their cross 

product in order to check their 

linear dependence.  
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Now we address the implicitization issue.  Here is the Maple code (at the end of file [S2]): 
 

 

# gives the implicit equation for the surface 

#transforms the output in a from which may be used by the next 

command 

 

#displays the obtained surface together with the curve of singular points 

Denote by S the surface whose implicit equation has been obtained in this session, namely: 

(11)        041827: 3 =++ zzyxS . 

 Three views of the output of the last command are shown in Figure 8: 

   

(a) (b) (c) 

 

Figure 8: the implicit equation surface with the curve C 

 

Let us analyze the situation: 

• Figure 8a is sufficient to show that C is drawn on S; this is proven by a substitution of 

Equations (1) into Equation (11).  

• Figure 8c shows that S apparently has a saddle structure. This is proven by standard Calculus 

methods, but these methods will show that S has only one singular point, the saddle point.  

• The 1-parameter family of the previous section is a subfamily of the 2-parameter family we 

study here, obtained for 0=v . Intuitively, we would have expected to see here too the cuspidal 

edge of the previous section, but we have it not. 

 

Actually, superposition of the rightmost plot in Figure 7 with Figure 8b gives the clue, as shown in 

Figure 9: 
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Figure 9 

 In the implicitization process Equations (9) imply Equations (11), but the converse is not true. The 

surface S is only “half” the surface in Figure 8, and the curve C is its boundary.  

 

     

5. Conclusions    
Dana-Picard and Zehavi discussed in [8] the transition from 1-parameter families of plane curves to 

1-parameter families of surfaces. The assumption was that the study of a geometric progression family 

of curves in the plane, then to a geometric progression family of planes in the 3-dimensional space 

may lead a student to understand that he/she is discovering the bases of a general theory. Here we 

study a transition in a 3D setting, from a 1-parameter situation towards a 2-parameter situation. We 

consider the two transitions as successive loops in Buchberger’s educative spiral (see [3]), applied to 

the theory of envelopes. The level of abstraction increases with the transition from surfaces to 1-

parameter families of surfaces, and again when going further to 2-parameter families of surfaces.  

Among Kock’s three definitions of an envelope of a 1-parameter family of surfaces ([13], [14], and 

v.s. Section 2), we used at first the synthetic one, which enables the derivation of automated proofs, 

as in [8] for families of plane curves. Despite the fact that the “space of plane curves” is not well-

defined, neither is a topology in this space, the intuition provided by the CAS, when showing two 

“infinitesimally close” objects in the family and providing a visualization of the limit process thus 

building a characteristic curve, was very efficient. After all, this is often the way the tangent to a curve 

at a given point is introduced to high-school students: plot the curve C and a fixed point A on C, and 

a mobile point M on C. Draw the line (AM) and push the point M along C towards A until A and M 

coalesce.  

This is true for the plane, less for surfaces in space as visualization is more problematic. Figure 4 

shows a couple of planes in the geometric progression family of planes; this plot cannot support 

intuition. This is totally different from what happens in the corresponding plane case.  

Besides being examples showing common features and different features, the two examples which 

have been presented here have another mathematical connection. The envelope of a 1-parameter 

family of spheres is not a ruled surface, but a relation exists, via a Lie transformation, between this 

envelope and the ruled surface generated by the lines corresponding to the spheres in this 

transformation (see [11]).  Such a remark justifies further work, another loop on Buchberger’s 

spiral. 

 

Oldknow and Tetlow explain in [15] that “Teaching 3D geometry beyond primary school level has 

presented real problems to many teachers, especially when pupils, and teachers, have very limited 

spatial awareness themselves”.  The authors teach pre-service and in-service teachers, and also 

students towards a degree in engineering. For them, Oldknow and Tetlow’s remark is still valid: 
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adults may have limited skills to visualize a 3D situation. The development of dynamical software 

for 3D geometry is really important. It will support experimentations and enable to conjecture what 

will be proven afterwards using joint methods, paper-and-pencil based and automated. 

 

Back to Thom’s remark in [19], the usage of technology enables to re-introduce envelopes into the 

curriculum. Working in a mixed framework, using paper-and-pencil methods together with CAS 

and DGS helps students to develop technological skills. The study of concrete examples from the 

fields mentioned in the introduction makes the topic important in STEM education.   

We wish to finish with a quote from Hilbert’s address in 1900 on the importance of envelopes (in 

[12]): “who would give up the picture of a family of curves or surfaces with its envelope which 

plays so important a part in differential geometry, in the theory of differential equations, in 

the foundation of the calculus of variations and in other purely mathematical sciences?” 
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